\
) |
P 9

,
y

N
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

ya \

A
A

/A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

The Magnetohydrodynamics of Energy Release in
Solar Flares [and Discussion]

E. R. Priest, K. J. H. Phillips and M. G. Haines

Phil. Trans. R. Soc. Lond. A 1991 336, 363-380
doi: 10.1098/rsta.1991.0087

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1991 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;336/1643/363&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/336/1643/363.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

The magnetohydrodynamics of energy release in
solar flares

By E. R. PrRIEST

Department of Mathematical and Computational Sciences, The University,
St Andrews KY16 9SS, UK.
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A large solar flare is thought to occur when a sheared magnetic arcade loses
equilibrium or goes unstable and erupts, and drives magnetic reconnection in the
stretched-out magnetic field lines. These two key processes of magnetic eruption and
magnetic energy conversion by reconnection are reviewed briefly, with an account of
recent analytical and numerical models. When the height or length of a prominence
in a sheared coronal arcade is too great it may erupt and drive the formation and
reconnection of a current sheet below it. Recent progress in fast steady-state
reconnection theory has explained many puzzling features of numerical experiments,
and has shown how a new process of magnetic flipping can reconnect fields in three
dimensions. Also numerical modelling of the formation of flare loops and ribbons by
reconnection has accounted for many observational properties.
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At the core of a solar flare magnetic energy is believed to be released by the process
of magnetic reconnection. In this paper I shall describe, first, some recent
developments in the basic theory of reconnection and, secondly, the way the process
works in the flare context. Throughout, the stress will be on theoretical aspects of
energy release, since the observational aspects are treated by Canfield et al. (1991) in
the following paper.

The amount of magnetic energy contained in coronal structures is certainly
sufficient for a flare. For example, an arcade of field strength 500 G, radius 20 Mm,
length 100 Mm and shear angle 45° contains an excess energy of 6x10%J
(6 x 10%2 erg), sufficient for a large flare, whereas a loop of field strength 500 G, radius
5 Mm, length 100 Mm and twist 21 contains an excess energy of 7 x 10%* J, sufficient
for a small flare. Also, there is enough time to store the energy in excess of potential
by slow photospheric motions, injecting the required Poynting flux. For example,
footpoints moving at 1 km s™' cover a distance of 100 Mm in a day.

~ However, the timescale for energy release due to magnetic diffusion (ohmic
§ > dissipation) over a length-scale [ is

8 : Ta = /1,

- 5 where 5( = (uo)™1) is the magnetic diffusivity and o is the electrical conductivity ; and,
T O for a global length-scale [ & 10 Mm, this time is of order 10'' s, much too long for a
— o flare. The result is that one needs to create extremely small structures with length-

scales of 1 km or less in order to release the energy fast enough. The main questions
we therefore need to answer from a magnetohydrodynamic (MHD) viewpoint are: how
does the magnetic structure go unstable and how in detail is the energy released ?
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364 E.R. Priest

2. Basic theory of magnetic reconnection

Oppositely directed magnetic field lines in two dimensions may be carried towards
one another by a flow, and broken and reconnected in a region of very strong
magnetic gradient near an X-type neutral point. The physical effects of this process
are wide-ranging: the global topology and magnetic connectivity may be changed,
which affects the pathways for flow of fast particles and heat ; stored magnetic energy
is converted into heat and kinetic energy, so that hot fast streams of plasma are
ejected from the reconnection site; large electric currents and fields, shock waves,
filamentary structures and turbulence are created, all of which may help in
accelerating fast particles.

The two basic equations of MHD (see, for example, Priest 1982) are the induction
equation

0B/dt =V x (vx B)+4V*B (2.1

and the equation of motion
pdv/dt = —Vp+jx B, (2.2)

which determine the magnetic field (B) and plasma velocity (v). According to (2.1),
changes of Bin time are produced partly by the advection of magnetic field lines with
the plasma (the first term on the right) and partly by diffusion of the field lines (the
second term on the right). Almost everywhere the first effect dominates and the
magnetic field is frozen to the plasma. The exception is in very narrow regions of high
magnetic gradient and large electric current

Jj=(xB)/u. (2.3)

Here the magnetic field diffuses and energy is converted into heat ohmically (j2/0).
The integral of (2.1) is Ohm’s Law,

E=—vxB+j/o (2.4)

= —vxB+yVxB (2.5)

and in an ideal plasma, where diffusion is small, the second term on the right-hand
side is negligible.

The equation of motion (2.2) describes how the plasma is accelerated by a plasma

pressure gradient (Vp) and a magnetic force (jx B), which may be decomposed by

(2.3) into two terms, a magnetic pressure gradient (—V(B?/2u)) and a magnetic

tension force ((B.V)B/u). The ratio of the pressure gradient to the magnetic force is
in order of magnitude the plasma beta,

B =2up/B*. (2.6)

Also, by equating the inertial term on the left of (2.2) with the magnetic force, we
obtain in order of magnitude that the plasma is accelerated to a speed equal to the

Alfven speed, vy = B/(,LL,O)%- (2.7)

Classical theory

The classical reconnection mechanisms are illustrated in figure 1. In constructing
such mechanisms the main questions to answer were: what is the structure of the
magnetic field and what is the fastest reconnection rate ?

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

/,//’ \\
/

A
i P 9

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MHD of energy release 365
Figure 1 Figure 2
Oy 1By
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Figure 1. The classical energy conversion mechanisms of (@) Sweet—Parker, (b) Petschek, (c)
Sonnerup and (d) Sonnerup & Priest.

Figure 2. Notation and boundary conditions for the unified theory (Priest & Forbes 1986).
(i) By, = 0, (ii) 0B,,/0x = 0, (iii) B,, = f(x).

The Sweet (1958) model is a simple diffusion region or current sheet of length 2L
and width 2/ between oppositely directed magnetic fields. One may simply write
down order-of-magnitude relations between the inflow speed (v;) and the outflow
speed (v,;), which is the Alfven speed based on the inflow magnetic field (5;). Thus for
a steady state the plasma flows in at the speed

vy =1/l (2.8)

at which the magnetic field is trying to diffuse outwards. Also the conservation of
mass into and out of the region gives

Lv; = Iy, (2.9)

Elimination of / between (2.8) and (2.9) gives in dimensionless form the inflow Alfven
Mach number (i.e. the reconnection rate) as

M, =1/Ry,, (2.10)

where M = v/v, and R, = Lv,/n is the magnetic Reynolds number. In practice R,
is typically 10%-10'% and so the reconnection is very slow (M; ~ 1073-107%), which was
why Petschek sought a faster mechanism to explain energy release in a flare.

In the Petschek mechanism (1964) the diffusion region occupies only a small
central location, while most of the energy conversion occurs at standing slow-mode
shock waves that accelerate and heat the plasma to form two hot fast outflowing
streams. His analysis is disarmingly simple. The magnetic field decreases sub-
stantially from a uniform value (B,) at large distances to a value B; at the entrance
to the diffusion region, while the flow speed increases from v, to v;. The aim is to
determine for a given B, the maximum value of v, (in dimensionless form M, =
ve/Vae). The effect of the shocks is to provide a normal field component By, which
essentially produces the distortion in the inflow field from the uniform value B, at
large distances. Thus if the inflow field is potential, the distortion may be regarded
as being produced by a series of monopole sources along the x axis between |x| = L
and |x| = L, say. The result is that, as the diffusion region is approached the field
strength falls to

B, = B,— (4By/n) In (L,/L). (2.11)
Phil. Trans. R. Soc. Lond. A (1991)
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At the shock waves the condition that they be standing is By/+/(up) = v, and
Petschek estimates the maximum reconnection rate (M}) by putting B; =3B, in
(2.11) to be

M}=mn/8InR,. (2.12)

In practice this is typically 0.01, which is much greater than the Sweet—Parker rate.

In Sonnerup’s (1970) model an extra set of discontinuities is standing in the flow
ahead of the slow shocks, but Vasyliunas (1975) pointed out that these are slow-mode
expansion waves: they need to be generated externally at discrete points in the
flow which would not be present in astrophysical applications. Sonnerup & Priest
(1975) discovered an exact solution of the nonlinear MHD equations in which an
incompressible stagnation-point flow carries in oppositely directed (but straight)
magnetic field lines. Their model has since been generalized by Gratton ef al. (1988)
and Jardine et al. (1991) to include more general viscous flows.

3. Unified theory of fast, steady, almost-uniform reconnection

Vasyliunas (1975) clarified the physics of Petschek’s mechanism by pointing out
that the inflow region has the character of a fast-mode expansion with the pressure
and field strength decreasing and the flow converging as the magnetic field is carried
in. A fast-mode disturbance has the plasma and magnetic pressure increasing or
decreasing together, while a slow-mode disturbance has the plasma pressure changing
in the opposite sense to the magnetic pressure. An expansion makes the pressure
decrease while a compression makes it increase, even in the incompressible limit.
Sonnerup’s model possesses slow-mode expansions that are unlikely to be found in
astrophysics because they are discrete. Vasyliunas suggested that a Sonnerup-like
solution may, however, be possible with a diffuse slow-mode expansion spread
throughout the inflow region, making the field strength increase, the pressure
decrease and the flow diverge as the field lines are carried in, although he was unable
to find such a solution.

I wanted to understand Vasyliunas’s distinction mathematically and was also
puzzled at many strange features of some of the numerical reconnection experiments,
such as much longer diffusion regions than Petschek, diverging flows and large
pressure gradients. Also, can a Sonnerup-like solution be found without the extra
discontinuities ? And can a model in a finite region be produced, like the numerical
experiments ?

Terry Forbes and I (Priest & Forbes 1986) tried to answer such questions by
seeking fast, steady, almost-uniform reconnection solutions to the equations for two-
dimensional, incompressible flow, namely

p(v.Viv = —Vp+(VxB)x B/u, (3.1)
E+vxB=0, (3.2)
V.v=V.B=0. (3.3)

The solutions are almost uniform in the same sense as Petschek’s, namely that one
performs a linear expansion about a uniform field

B=BX+B,+..., v=0v,+....
Phil. Trans. R. Soc. Lond. A (1991)
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(@) (b) (c)
LN S w'w._’;,‘f,x%‘l

T
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Forbes 1986). (a) Slow compression (b, < 0), (b) Petschek (b, = 0), (c) hybrid expansion (0 < by <
2/m), (d) hybrid expansion (2/n < b, < 1), (¢) Sonnerup-like (b, = 1), (f) flux pile-up (b, > 1).

Equation (3.1) then reduces to the equation for a magnetostatic field
V24, = —(u/B,)dp,/dy, (3.4)
where B,, =04,/dy, B,,= —04,/0x.
The solution to (3.4) subject to the boundary conditions (figure 2) that
B,=0 ony=L, 0B,/ox=0 onx=L, B,,=0 onx=0

fZBNx/L, 0<z<L,
B 3 —

w = f@) ‘lZBN’ L<az<lL,

: <o Oy X 1 Y
= — — Hr— h 1 —= .
is A, zol(n+%)1r(by cos[(n+2)nL] cos [(n+2)1t(1 L)])’ (3.5)
i 1

where 0 = 4By sin[(n+3)nL/L,]

" L/Ly(n+1)?n2cosh [(n+1)n]

The solutions depend on a parameter b. When b = 0 this represents a Petschek-type
solution with a weak fast-mode expansion. From (3.2) the first-order flow (v, =
(E/B,)y), is uniform but the second-order flow is converging. By calculating B; one
can deduce a relation between M, and M;, which shows that, as Petschek had
expected, M, does indeed possess a maximum value which is close to Petschek’s
estimate.

When b = 1, the inflow field on the y-axis is uniform, and so we have found the
Sonnerup-like solution with a slow-mode expansion across the whole inflow region.
However, there are many other solutions for the other values of the parameter b,
which is determined by the nature of the flow on the inflow boundary, since the
horizontal flow speed at the corner (x,y) = (L., L,) is proportional to (b—2/m). As b
increases, so the inflow turns from being converging (and therefore producing slow-
mode compressions) to being diverging (with strong slow-mode expansions). The
latter comprise a flux pile-up régime with long diffusion regions. The resulting
reconnection rate (M,) is found to be faster than the Petschek rate for régimes with
b>0.

The main results from the above analysis are that the type of reconnection régime
and the rate of reconnection depend sensitively on the inflow boundary conditions,

Phil. Trans. R. Soc. Lond. A (1991)
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()

with the Petschek (b= 0) and Sonnerup-like (b =1) solutions being particular
members of a much wider class. Jardine & Priest (1988) have recently extended the
theory to include higher orders, compressibility and energetics. Also, it has been
compared with a variety of numerical experiments (Forbes & Priest 1987).

4. Non-uniform reconnection with separatrix jets

Numerical experiments such as that shown in figure 4 reveal four puzzling features
that are not present in the classical models of reconnection: (i) different types of
inflow; (ii) separatrix jets; (iii) reversed current spikes; (iv) highly curved field lines
in the inflow region. ‘

The first feature is one which Priest & Forbes (1986) attempted to model with their
unified almost-uniform theory. The other three features have been tackled in a new
non-uniform theory by Priest & Lee (1990).

Feature (iii), the reversed current spikes at the ends of the diffusion region, slows
down the streams of plasma that are emerging from the diffusion region and partly
diverts them along the separatrix jets. This is partly a consequence of imposing
boundary conditions at the outflow boundary that give a mismatch with the outflow
from the diffusion region.

By contrast, feature (iv), the highly curved inflow field lines and the associated
wide shock angle, is a direct result of the form of the inflow boundary conditions. In
general the number of such conditions that can be imposed equals the number of MED
characteristics that are propagating information into the region. For our case of two-
dimensional, sub-Alvenic, incompressible, essentially ideal flow, there are three
imposed conditions. For instance, if one prescribes

v, =0, v,=const., p= const. (4.1)
on the inflow boundary (AD), a solution of the MHD equations (3.1)—(3.3) is
B, = const., B, =0,

so that the straight field lines are carried in by a uniform flow without curving and
reconnection is impossible. If, on the other hand, boundary conditions only slightly
different from (4.1) are imposed, reconnection with weakly curved inflow field lines
may be produced, as in the Priest-Forbes theory. Thus it is entirely reasonable to
expect that conditions greatly different from (4.1) could produce a highly curved
inflow.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 5. The notation for reconnection with a highly curved inflow (Priest & Lee 1990).

Now equation (3.3) may be satisfied identically by writing v and B in terms of a
stream function (¥) and flux function (4), namely

v, =0W/dy, v,= —0W/ow, B,=04/dy, B,= —0d/o.

Then one may tackle in three steps the problem of nonuniform reconnection with an
imposed inflow (v,) and field strength (B,) on the inflow boundary producing a
diffusion region (OY) of half-length L with a separatrix YS and slow shock YH
(figure 5).

First of all, in the upstream region ahead of YH suppose for simplicity that both
the plasma speed (v) and sound speed are much smaller than the Alfven speed (v,).
Then (3.1) implies that j = 0, and so for a potential field with a current sheet we may
use complex variable theory to pick

B,+iB, = B(z*/I?— 1)}, (4.2)

Y

where z = x-+iy and there is a cut in the complex plane (a current sheet) from
z= —L to z= L. Then (3.2) implies that the flow velocity may be deduced from

ds
Y= veBeJ—B—, (4.3)

where the integral is along a field line. The second step is to calculate the position of
the shock from the characteristic curve

Y+ A4 = const.

that passes through the end point (Y) of the diffusion region. Then the shock
relations are applied to deduce the conditions just downstream of YH. Finally, one
needs to solve the MHD equations in the downstream region subject to the appropriate
boundary conditions at the shock and at the outflow boundary CH. In general these
equations may be written ».VA = —uv,B,, (4.4)

v.Vo = B.Vj, (4.5)
where v = —V2¥ is the vorticity.
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 6 Figure 7

0

Figure 6. Field lines for one quadrant of non-uniform reconnection (Priest & Lee 1990). L = 0.05
L, (a), 0.2 L, (b), 0.4 L, (c), 0.6 L, (d).

Figure 7. Streamlines corresponding to figure 6.

For example, the results of assuming » » v, and so taking w = 0 or
V¥ =0,

with ¥ imposed along the boundary YHC and ¥ = const. on YC are shown in figures
6 and 7. The shock (strictly speaking an Alfvenic discontinuity of slow-mode
compressional type in this incompressible model) is shown dashed but is rather weak
and has little effect on the magnetic field. The effect of the reversed current spike
downstream of the diffusion region shows up in the field lines of abnormal curvature
and in the spreading of the streamlines. Also the separatrix jet is prominent and
makes streamlines follow the separatrix as they pass through it. As the current sheet
decreases in length, so the inflow speed increases up to a value that depends on the
inflow Alfven Mach number. Results have also been obtained by solving the full
equations (4.4) and (4.5).

5. Three-dimensional reconnection

In two dimensions, reconnection is now fairly well understood. In the ideal region
around an X-type neutral point we have in cartesian coordinates

E,+v,B,—v,B, =0, (5.1)

where for a steady-state process VX E =0 implies that E, is constant. Thus
reconnection can only take place at X-type neutral points and, as such a point is
approached, the speed v, perpendicular to the field lines approaches infinity.

In three dimensions our understanding is very hazy and has been reviewed by
Sonnerup (1988). Even our definition of reconnection is a matter for debate (Hesse
& Schindler 1988; Schindler et al. 1988). The most intuitive way is in terms of a
change of field-line connectivity, but a new definition has recently been proposed by
Priest & Forbes (1989), who suggest that it occurs when there is a singular line, which

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 8. (a) Characteristic coordinates for the field B = (y,z, —1), (b) reconnection at the field
line with k£ = k,, ¢ = c,.

D C D

Tigure 9. The mapping of magnetic field lines from one plane (z = L) to another (z = 0), showing
several field lines. As one footpoint moves from A (a) to A (b), the opposite end flips rapidly from B,
to D, (Priest & Forbes 1991).

is defined to be a field line with two properties: first, it has a nearby X-type topology
in the sense that field lines in a plane perpendicular to the field line are hyperbolic;
secondly, it has an electric field along it. In general, a sheared magnetic configuration
may possess a whole continuum of potential singular lines, and which one supports
reconnection depends on the imposed flow velocity or electric field.

For example, Priest & Forbes (1989) are able to show what flow or electric field
produces kinematic reconnection along any field line of the field

(Bz’By’Bz) = (y7x> _1)7 (52)

which consists of the usual X-type field in the xy plane together with a uniform field
in the z direction (figure 8).

Previously, it had been thought (see, for example, Lau & Finn 1990) that
reconnection can only take place in three dimensions at a null-point, where all three
components of the magnetic field vanish. Priest & Forbes (1991), however, have
demonstrated that reconnection can take place in any sheared field, by a new process
called magnetic flipping. Consider a sheared field such as (5.2) joining one plane to
another (figure 9). Suppose there is a two-dimensional stagnation-point flow with
streamlines in planes parallel to the xy plane. Assume that the magnetic footpoints
A and C in one plane are frozen to the flow and ask what happens in the other plane
(z = 0). Although the plasma moves slowly from B, to B, and D, to D,, the magnetic
footpoint B, rapidly flips down from B, to D,, and D, flips rapidly up to B,. In other
words, the magnetic field reconnects. However, this process is very different from
two-dimensional reconnection, where the ideal equations fail in small regions around
the X-point, since now diffusion takes place everywhere along the surface BD
(and/or AC).

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 10. The overall scenario for a large (two-ribbon) flare. (¢) Equilibrium, (b) slow rise, (c)
fast eruption upwards.

reconnection

Mathematically, one seeks steady-state solutions for the flow and electric field to

the equations VXxE=0 (5.3)
and E4+vxB=0 (5.4)
in the ideal region for the magnetic field (5.2). The solutions are of the form
E, E,x |
E,= yz_iner(y?—xz), By = =iyl =), (5.5)
Uy = yvy_Ez’ v, = _&—i—E’;y/:E_l—F(yz-—xz) (56)
x x o yrP—x

and so possess singular jetting at the surfaces y = . The singularities may be
resolved as boundary layers by resistive and viscous effects.

6. Reconnection in solar flares

Magnetic reconnection has several roles in flares. It may create small flares when
newly emerging flux or laterally moving flux interacts with neighbouring flux of
opposite polarity (Priest 1987). This process of emergence has been modelled
numerically by Forbes & Priest (1984), and many aspects of it were discussed in the
emerging flux model (Heyvaerts et al. 1977) and its refinements (Tur & Priest 1976,
1978 ; Milne & Priest 1981).

The overall picture for a large solar flare (figure 10) is that during the preflare phase
an active-region prominence and its overlying arcade rises slowly due to some kind
of weak eruptive instability or nonequilibrium. At the flare onset the field lines that
have been stretched out start to break and reconnect, which releases energy
impulsively and causes the prominence suddenly to erupt much more rapidly. During
the main phase reconnection continues and creates hot X-ray loops and Ha ribbons
at their footpoints as the field continues to close down. The increase in altitude of
the reconnection point causes the locations of the hot loops to rise and of the
chromospheric ribbons to move apart. Thus the role of reconnection in large flares is
to release the magnetic energy, both in the impulsive and main phase, and sometimes
to trigger this release (as in the emerging flux model).

The main questions that MmuD addresses are the cause of the eruption and the
details of the energy conversion process. Numerical experiments have focused on two
problems: first, the details of the closure process, whereby the stretched-out field
lines reconnect and close back down; secondly, the global eruption in response to
footpoint motions. We summarize some of the work on these in turn below.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 11. Numerical experiment on the close-down of field lines (Forbes & Priest 1984). ¢ = 0 (a),
78.22 (b), 84.06 (c), 99.19 (d), 106.19 (e), 118.82 (f).

(@) The closure process

Kopp & Pneuman (1976) first suggested that the reconnection process can create
flare loops in a two-ribbon flare, with the loops rising and the ribbons separating as
the reconnection point rises. Then Cargill & Priest (1982) showed that the magnetic
shocks that propagate from the reconnection site can heat the plasma to the observed
temperatures of sometimes 107 K. Subsequently, the plasma cools and falls to give
the classical Ha loops with plasma draining down both legs.

Detailed modelling of the positions of the loops has been undertaken by Poletto &
Kopp (1986, 1988) and a kinematic analysis to deduce the resulting electric fields was
presented by Forbes & Priest (1982a,b).

Forbes & Priest (1982a,b, 1984) set up a numerical experiment with initially
vertical field lines in stretched-out equilibrium and anchored at their lower ends to
the base of the numerical box due to photospheric line-tying. The experiment showed
how the field lines begin to reconnect by the tearing-mode instability and then close
down, creating closed loops in a quasi-steady manner (figure 11). The current density
contours (figure 12a) reveal the location of the diffusion region, and the slow-mode
shock waves.

The basic picture of the closure process has recently been refined considerably
(figure 12b), and recent developments of the numerical experiment have revealed
new features of relevance to the observations (Forbes et al. 1989) as follows.

1. The quasi-steady reconnection may be modulated in a time-dependent manner
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Figure 12(a) Current density contours in numerical experiment on close-down (Forbes & Priest
1984) at t = 93.38. (b) Schematic of creation of flare loops and Ha ribbons.

as the reconnection enters an impulsive bursty régime (Priest 1986) in which the
central diffusion region is so long that it tears (Forbes & Priest 1987), with neutral
point pairs being slowly created and then rapidly annihilated. This process is
observed in several other numerical experiments (Birn 1980; Biskamp 1982; Lee &
Fu 1985; Scholer 1989) and may explain the sudden jumps in loop height that are
observed, and the impulsive nature of hard X-ray emission.

2. A fast-mode shock stands in the flow below the reconnection region and slows
down the supermagnetosonic stream of plasma as it encounters the obstacle of closed
field lines below it (figure 12). At the same time it compresses the plasma. The
increase in density drastically reduces the radiative timescale and triggers a thermal
condensation which creates cool Ha loops below the hot X-ray loops.

3. A reversed deflection current deflects the flow around the stagnation region.

4. The slow-mode shock wave in the presence of thermal conduction splits up into
a conduction front (which propagates down to the chromosphere and across which
the temperature rises), together with an isothermal shock wave (across which the
density increases).

5. Evaporation is driven from the chromosphere, both by the conduction front
and by high-energy particles which travel from the reconnection site along the
separatrix ahead of the conduction front. This greatly enhances the density in the
hot X-ray loop, in agreement with observations.

6. When the magnetic field is smaller than 1073 T and the field component out
of the plane is large enough, a different régime of reconnection is found with
submagnetosonic streams of plasma ejected down from the reconnection region. The
result is that no fast-shock or rapid condensation is created. Such a régime is
appropriate to the eruption of quiescent prominences outside active regions.

(b) The global eruption

Mikic et al. (1988) have modelled the global eruption of a coronal arcade
numerically. They have a periodic set of arcades and impose a shearing motion of
amplitude 0.01 v, at the base. With 100 x 256 mesh points their magnetic Reynolds
number is 10%. The arcade evolves through a series of equilibria, and then at some
point reconnects and forms a plasmoid which is ejected out of the top of the
numerical box (figure 13). However, there are problems with this experiment, since
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Figure 13. Numerical experiment on global eruption (Mikic et al. 1988). ¢ = 300 7, (a), 330 7, (b),
340 7, (c).

reconnection starts at the edges of the arcade, where it interacts with neighbouring
arcades. Also, Biskamp & Welter (1989) find that a single arcade remains stable as
it is sheared.

So why does the eruption occur? One possibility is that it results from the
interaction of two separate regions, as in the emerging flux model (Heyvaerts et al.
1977) and as Mikic et al. (1988) and Biskamp & Welter (1989) model numerically.
This certainly appears to be the case in some, but not all, flares. So is it possible to
understand eruption from a single region ?

During the 1980s we considered the linear MHD stability of coronal structures and
showed that it is photospheric line-tying which provides the stability and enables the
field to store magnetic energy in excess of potential as it is sheared by footpoint
motions. When a single flux tube is twisted too much it becomes unstable (Hood &
Priest 1979 ; Einaudi & van Hoven 1983). A simple force-free arcade, at least a linear
one, is always stable (Hood & Priest 1990; De Bruyne & Hood 1989). But, when a
magnetic island is present in an arcade, which may support a prominence, it can
become unstable if the height of the prominence or its length exceed critical values
(Hood & Priest 1980). This is consistent with the observation that parts of polarity-
inversion lines where the shear is the greatest are the locations of flares (Hagyard
et al. 1985).

However, a linear instability result has the limitation of saying nothing about the
nonlinear development, and so recently we have been considering the possibility of
magnetic non-equilibrium or catastrophe. An analysis by Demoulin & Priest (1988)
models a prominence as a sheet of mass and current supported in a linear force-free
two-dimensional field with field components

(B,,B,,B,) = (B,(4),04 /32, —04/dy), (6.1)
where the flux function 4 is given by
V4 +a%4 = 8(y)d(z—h) (6.2)
Phil. Trans. R. Soc. Lond. A (1991)
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(b)

hiho

Figure 14 (@) The equilibrium magnetic structure in a plane perpendicular to the prominence axis.
(b) The structure during the eruption with current sheet below the prominence. (¢) The magnetic
work as a function of a filament height % and (d) the filament speed as a function of height for
(i) no reconnection and (ii) uninhibited reconnection (Priest & IFForbes 1990).

when the prominence is located at height z = h above the photospheric surface (z = 0).
The solution of this may be written as the sum of a complementary function and
a particular integral (a Green’s function) and the normal field component B, is
imposed at the photosphere. The condition for prominence equilibrium

1B, = myg (6.3)

at the prominence of mass m then determines the way the prominence current (/)
varies with its height (%). The startling feature is that when the prominence reaches
a critical height there is a catastrophe with no neighbouring equilibrium and it
erupts. The eruption also occurs if the force-free arcade is sheared too much, in
agreement with observations. However, this is only the case when there is a
substantial quadrupolar component to the active region: in other words, one needs
complexity in the photospheric field, as indeed the observations show.

A similar analysis with a slightly different external field has been carried out by
Priest & Forbes (1990). They set up a model for equilibrium and eruption by
regarding the prominence as an electric current filament situated at height 4 in a
background active-region field modelled by a magnetic line dipole situated below the
photosphere (figure 14a). The model is an extension of previous work by Van Tend
& Kuperus (1978) and Kuin & Martens (1986). As the filament current or twist
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(b)

Tigure 15. Magnetic field lines for a numerical experiment on the eruption process
(Forbes 1991). (a) t =0, (b) t = 0.61.

increases so the prominence rises slowly through a series of equilibria. But when a
critical twist or current is exceeded there is no neighbouring equilibrium and a
magnetic non-equilibrium or catastrophe takes place, with the unbalanced forces
causing the prominence to erupt. The velocity (d4/dt) of the prominence as a
function of time or height may be obtained by solving its equation of motion

md®h/de> = IB*, (6.4)

where m is the prominence mass, / its current and B* the field at the prominence due
to the background field.

When the plasma velocity is sub-Alfvenic the magnetic field (B,,B,) around the
prominence during the eruption may be represented in terms of the complex variable
Z = x+1y, where the y axis is vertically upwards (figure 14b) as

B, +iB, = imh*[(Z*+ p*)(Z* + ¢*) |/ pg Z*(Z* + h?). (6.5)

This possesses a line current at Z = ik (the prominence), a line dipole at Z = 0 (the
background field) and a cut in the complex plane from Z =ip to Z =iq (the
prominence current sheet).

When no reconnection is allowed one finds that beyond the non-equilibrium point
the magnetic energy declines and the filament speed increases with height (figure 14c¢,
d). Thus the prominence erupts even if no reconnection is allowed. When reconnection
is allowed, however, it is then driven by the eruption. The magnetic work declines
more rapidly and the prominence erupts faster, with an energy release eight times
faster. The resulting large electric field in the reconnection region may well be
important for accelerating fast particles.

Forbes (1991) has been using an Fcr code with 50 x 100 gridpoints to study this
process numerically. The initial state and the field lines during the eruption are
shown in figure 15, where the creation of the reconnecting current sheet below the
erupting prominence can clearly be seen. In a streamline picture a pair of vortices is
found below and to either side of the prominence, and plots of density and current
density contours reveal the presence of a fast-mode shock travelling ahead of the
prominence together with slow-mode shocks near the reconnection site.

7. Conclusion

As we have seen, there have been many developments in the basic theory for
reconnection during the past few years. A combination of numerical experimentation
and analytical theory has greatly increased our understanding of the effects of
boundary conditions in producing a wide variety of different régimes. The field lines
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in the inflow may be either slightly or greatly curved, and the nature of the inflow
may be a fast-mode compression (when the flow is strongly converging) or a slow-
mode expansion (when it is strongly diverging). Also the presence of separatrix jets
and reversed current spikes has modified the basic models. Furthermore, a
consideration of three-dimensional aspects is demanding a rethinking of our basic
definitions of reconnection and has shown a new process of magnetic flipping as a
means of reconnection without null points.

Numerical experiments of reconnection in a two-ribbon flare have refined and
developed the basic picture of fieldline closure that creates flare loops and have
explained many observational features. Also, the eruption of a prominence at the
start of such a flare may well be caused by a process of magnetic non-equilibrium
when the length or height of the prominence is too great.

In future, many developments are expected from more sophisticated numerical
experiments and from studies of the three-dimensional aspects. Also, one hopes that
the microscopic plasma physicists can make use of the MmED studies, so that further
progress can be made on the microscopic processes such as particle acceleration, and
so that together we may understand this beautiful phenomenon.
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Discussion

K. J. H. Purrrips (Rutherford Appleton Laboratory, U.K.). The observations of Ho
loop prominences show that the height of successive prominences increases in a
particular way (in fact proportional to #, where ¢ is time after flare) with time. Do
your numerical simulations predict such a relation ?

E. R. PriesT. The models are in qualitative agreement with the observed rate of rise
of flare loops. Also Forbes & Priest (1982a, b and J. Geophys. Res. 88, 863-870 (1983))
compared a kinematic model of loop rise with the observations and showed that the
observed decrease in the rate of rise could be produced by a constant rate of
reconnection. However, to make a detailed quantitative comparison, one needs an
accurate measure of the coronal magnetic field strength.

M. G. HaiNgs (Imperial College, London, U.K.). Is a realistic value of the Lundquist
number being used in your modelling of reconnection ?

E. R. PriesT. The Lundquist number used in the numerical experiments is at most
103, which of course is much smaller than the classical value in a flare of 10 or 10!2.
There is no way in the foreseeable future that such values could be employed in a
numerical experiment. Instead, the philosophy of numerical experimentation is to
adopt as large a value as possible and to deduce basic features of the physical
processes and scaling laws which can be extrapolated to realistic Lundquist numbers.
Furthermore, in a flare the Lundquist numbers are in reality probably far smaller
than the classical values due to the presence of turbulence: indeed Forbes & Priest
(Solar terrestrial physics: present and future (ed. D. Butler & K. Papadopoulos), pp.
1-35. NASA RP 1120 (1984)) worked backwards and used the observed loop motion
to deduce a turbulent Lundquist number of 108.
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